Part Number Hot Search : 
EAIRMBA4 B15N10 BD6XXX ANTXV 74AUP2G 1N4737CG C2506 G88MP
Product Description
Full Text Search
 

To Download IRFI4321PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  6/23/06  www.irf.com 1 hexfet   power mosfet IRFI4321PBF s d g gds gate drain source benefits  low r dson reduces losses  low gate charge improves the switching performance  improved diode recovery improves switching & emi performance  30v gate voltage rating improves robustness  fully characterized avalanche soa applications  motion control applications  high efficiency synchronous rectification in smps  uninterruptible power supply  hard switched and high frequency circuits d s d g to-220ab full-pak absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  mj t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  ??? 2.73 c/w r ja junction-to-ambient  ??? 65 46 max. 34 21 140 -55 to + 150 0.37 10lb  in (1.1n  m) 300 30 170 v dss 150v r ds(on) typ. 12.2m  max. 16m  i d 34a
  2 www.irf.com s d g    repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.85mh r g = 25 ? , i as = 20a, v gs =10v. part not recommended for use above this value.  pulse width 400s; duty cycle 2%.     
      static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 150 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 190 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 12.2 16 m ? v gs(th) gate threshold voltage 3.0 ??? 5.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 1.0 ma i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g(int) internal gate resistance ??? 0.8 ??? ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 50 ??? ??? s q g total gate charge ??? 73 110 nc q gs gate-to-source charge ??? 24 ??? q gd gate-to-drain ("miller") charge ??? 20 ??? t d(on) turn-on delay time ??? 18 ??? ns t r rise time ??? 29 ??? t d(off) turn-off delay time ??? 27 ??? t f fall time ??? 20 ??? c iss input capacitance ??? 4440 ??? pf c oss output capacitance ??? 390 ??? c rss reverse transfer capacitance ??? 84 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 34 a (body diode) i sm pulsed source current ??? ??? 140 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 86 130 ns i d = 20a q rr reverse recovery charge ??? 310 470 nc v r = 128v, i rrm reverse recovery current ??? 6.7 ??? a di/dt = 100a/s
t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 10v
v dd = 75v t j = 25c, i s = 20a, v gs = 0v
integral reverse p-n junction diode. showing the i d = 20a r g = 2.5 ? conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma
v gs = 10v, i d = 20a
v ds = v gs , i d = 250a v ds = 150v, v gs = 0v v ds = 150v, v gs = 0v, t j = 125c mosfet symbol v ds = 75v conditions v gs = 10v
v gs = 0v v ds = 50v ? = 1.0mhz conditions v ds = 50v, i d = 20a i d = 20a v gs = 20v v gs = -20v
  www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 5.0v vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 20a v gs = 10v 1 10 100 1000 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 5000 6000 7000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20406080100120 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 120v vds= 75v vds= 30v i d = 20a 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 150c 5.0v vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v 3.0 4.0 5.0 6.0 7.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60s pulse width t j = 25c t j = 150c
  4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 25 50 75 100 125 150 t c , casetemperature (c) 0 5 10 15 20 25 30 35 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 140 150 160 170 180 190 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e 40 60 80 100 120 140 160 v ds, drain-to-source voltage (v) 0.0 1.0 2.0 3.0 4.0 5.0 e n e r g y ( j ) 25 50 75 100 125 150 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.6a 5.4a bottom 20a 0.1 1.0 10.0 100.0 1000.0 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc 0.2 0.4 0.6 0.8 1.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v
  www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ? (sec) 0.312941 0.000381 1.187255 0.219458 1.231176 2.895 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 tav (sec) 0.01 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 160 180 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 20a
  6 www.irf.com  
    fig 16. threshold voltage vs. temperature  
     
    

    -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 6.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250a 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 10 20 30 40 i r r m - ( a ) i f = 33a v r = 128v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 10 20 30 40 i r r m - ( a ) i f = 50a v r = 128v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 400 800 1200 1600 2000 2400 2800 3200 q r r - ( n c ) i f = 33a v r = 128v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 400 800 1200 1600 2000 2400 2800 3200 q r r - ( n c ) i f = 50a v r = 128v t j = 125c t j = 25c
  www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. !  
   for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
  
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period "     " + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
     1k vcc dut 0 l
  8 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 06/06 to-220ab full-pak packages are not recommended for surface mount application. 
   
    
    
     logo in the assembly line "k" as s embled on ww 24, 2001 example: lot code 3432 t his is an irf i840g with assembly part number irf i840g international rectifier 124k note: "p" in as s embly line pos ition i ndi cates "l ead- f r ee" line k week 24 year 1 = 2001 dat e code lot code assembly 34 32
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRFI4321PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X